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Summary

Molecular analysis of a patient affected by the autosomal
recessive skeletal dysplasia, pycnodysostosis (cathepsin
K deficiency; MIM 265800), revealed homozygosity for
a novel missense mutation (A277V). Since the A277V
mutation was carried by the patient’s father but not by
his mother, who had two normal cathepsin K alleles,
paternal uniparental disomy was suspected. Karyotyping
of the patient and of both parents was normal, and high-
resolution cytogenetic analyses of chromosome 1, to
which cathepsin K is mapped, revealed no abnormalities.
Evaluation of polymorphic DNA markers spanning
chromosome 1 demonstrated that the patient had in-
herited two paternal chromosome 1 homologues,
whereas alleles for markers from other chromosomes
were inherited in a Mendelian fashion. The patient was
homoallelic for informative markers mapping near the
chromosome 1 centromere, but he was heteroallelic for
markers near both telomeres, establishing that the pa-
ternal uniparental disomy with partial isodisomy was
caused by a meiosis II nondisjunction event. Phenotyp-
ically, the patient had normal birth height and weight,
had normal psychomotor development at age 7 years,
and had only the usual features of pycnodysostosis. This
patient represents the first case of paternal uniparental
disomy of chromosome 1 and provides conclusive evi-
dence that paternally derived genes on human chro-
mosome 1 are not imprinted.
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Introduction

Pycnodysostosis is a rare autosomal recessive sclerosing
skeletal dysplasia that is characterized by reduced stat-
ure, osteosclerosis, acro-osteolysis of the distal phalan-
ges, frequent fractures, clavicular dysplasia, and skull
deformities with delayed suture closure (Andren et al.
1962; Maroteaux and Lamy 1962). To date, >150 pa-
tients have been reported (e.g., Sedano et al. 1968; Edel-
son et al. 1992), most of whom were the offspring of
consanguineous parents. The pycnodysostosis locus was
mapped to chromosomal band 1g21 by genetic linkage
(Gelb et al. 1995; Polymeropoulos et al. 1995), and the
disease gene was identified recently, by means of a po-
sitional cloning strategy, as cathepsin K, a lysosomal
cysteine protease (EC 3.4.22.38) (Gelb et al. 1996). The
human cathepsin K ¢cDNA (Bromme and Okamoto
1995; Inaoka et al. 1995; Li et al. 1995; Shi et al. 1995)
and genomic organization (Gelb et al. 1997; Rood et al.
1997), including the promoter and intron/exon bound-
ary sequences, have been determined. Three mutations
in the mature region of the cathepsin K prepropeptide
were reported, elsewhere, in four unrelated pycnody-
sostosis families (Gelb et al. 1996; Johnson et al. 1996).
These lesions included a missense (G146R), a nonsense
(R241X), and a stop codon (X330W) mutation that al-
tered the amino acid sequence of the mature polypeptide.
Transient expression of the X330W allele resulted in
normal message levels but no immunologically detect-
able protein (Gelb et al. 1996).

In the course of molecular analysis of a nonconsan-
guineous pycnodysostosis family, genotyping with poly-
morphic DNA markers from 1q21 revealed that the af-
fected child had inherited a paternal haplotype but no
maternal haplotype. Subsequent analyses with infor-
mative 1p and 1q telomeric markers showed inheritance
of both paternal alleles. Mutation analysis detected hom-
oallelism in the patient for a cathepsin K missense mu-
tation that was carried by his father but not by his
mother. Cytogenetic studies failed to reveal any abnor-
malities of chromosome 1. Therefore, it was concluded
that pycnodysostosis had resulted from paternal uni-
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parental disomy (UPD) for chromosome 1 with inheri-
tance of two copies of a cathepsin K mutation carried
by the father.

Aside from representing a novel mechanism for the
inheritance of this rare skeletal dysplasia, this case is
noteworthy for being the first example of paternal UPD
for chromosome 1. Since the concept of UPD was first
delineated by Engel (1980), instances of maternal and
paternal UPD involving the X chromosome and the ma-
jority of the autosomes have been documented (Led-
better and Engel 1995). For several chromosomes, UPD
results in distinct phenotypes depending on the parental
origin of the chromosomes. The phenomenon appears
to be mediated by genomic imprinting of a specific gene
or, more often, of a group of genes that are inherited
from both parents but that function unequally in the
offspring, depending on their parental origin. Well-es-
tablished examples include the Prader-Willi and Angel-
man syndromes, which can result from maternal and
paternal UPD for chromosome 135, respectively, and the
Beckwith-Weideman syndrome, which has been associ-
ated with paternal UPD of chromosome 11 (Ledbetter
and Engel 1995). For chromosomes without imprinting
effect, UPD does not cause a phenotype directly, but it
may be detected if two copies of a mutation for an au-
tosomal recessive trait are inherited from one parent.
For example, UPDs for chromosomes 7 and 8 were
found during molecular analyses of patients with con-
genital chloride diarrhea and lipoprotein lipase defi-
ciency, respectively (Hoglund et al. 1994; Benlian et al.
1996). To assemble a complete imprinting map of the
human genome, it is necessary to assemble both a ma-
ternal and a paternal UPD case for all chromosomes.

Recently, Pulkkinen et al. (1997) reported the first case
of maternal UPD for chromosome 1, discovered in a
newborn who presented with the autosomal recessive
dermatologic disorder, Herlitz junctional epidermolysis
bullosa, but without dysmorphic features. Although his
death at 2 months of age limited a complete assessment
of the patient’s psychomotor development, the authors
concluded that maternal imprinting on chromosome 1
was highly unlikely. In this communication, we describe
a case of paternal UPD for chromosome 1 that did not
result in phenotypic abnormalities or developmental de-
lay, suggesting that chromosome 1 can be added to the
list of autosomes without imprinting.

Patient, Material, and Methods

Clinical Report

The propositus was a 3,210-g (50th percentile), 49-
cm (25th—50th percentile) male, the fourth child born
to healthy unrelated parents. The mother was 36 years
old and of Belgian descent. The father was 38 years old
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and of mixed Belgian and Algerian descent. The preg-
nancy, labor, and delivery were uncomplicated. The pro-
positus was first evaluated at 4.5 years of age, by a
clinical geneticist (A.V.). At that time, his weight was 25
kg (95th percentile), his height was 98 ¢cm (5th percen-
tile), and his occipital-frontal circumference was 51 cm.
Physical examination revealed a round face with prom-
inent frontal bossing, narrow palpebral fissures, a long
philtrum, micrognathia, microstomia, crowded and ir-
regular teeth, generalized obesity, short hands (9.5 cm)
with brachdactyly (third finger 3.5 c¢m), short feet (16
cm), and mildly dysplastic nails. Roentgenograms doc-
umented osteosclerosis with narrowed medullary spaces,
proportionately short long bones, brachydactyly with
acro-osteolysis, complete loss of the mandibular angle,
and sclerotic cranial bones with widely open sutures.
The propositus had previously sustained three patho-
logical fractures of the lower extremities. These clinical
and radiologic findings were consistent with the diag-
nosis of pycnodysostosis.

The patient’s only other known medical problem was
normocalcemic hypercalciuria with ureteral lithiasis,
which was also present in his father. The propositus had
normal serum parathormone and vitamin D metabolite
levels. The urinary Ca/creatinine ratio was >0.2, and
calciuria of 3.5-6.0 mg/kg/d was documented. No hy-
peroxaluria or hyperuricosuria was observed. The pro-
positus, who is currently 7 years old, has achieved his
neurodevelopmental milestones appropriately and cur-
rently performs academically at the expected grade level.

Cytogenetic and Molecular Analyses

Routine cytogenetic analysis was performed on pe-
ripheral blood lymphocyte cultures from the propositus
and both parents. Genomic DNA for molecular studies
was extracted from lymphocytes by standard techniques
(Sambrook et al. 1989). Simple-tandem-repeat markers
(STRs) from chromosome 1 were PCR-amplified with
oligonucleotide primers (Research Genetics) as described
elsewhere (Gelb et al. 1995). Similarly, STRs from six
other chromosomes were analyzed. Mutation analysis
for the cathepsin K gene was performed by PCR am-
plification of the seven coding exons and adjacent in-
trons from genomic DNA of the propositus. Amplified
fragments were isolated and sequenced by cycle sequenc-
ing with an ABI 377 Sequencer. These sequences were
compared with wild type using the FRACTURA and
AUTOASSEMBLER software packages. The identified
mutation obliterated an Acil site, so its presence was
assayed in the propositus and his parents by PCR am-
plification of cathepsin K exon 7 from genomic DNA,
digestion of the product with Acil, and separation of the
resulting fragments by horizontal electrophoresis in an
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Figure 1 Restriction-fragment-length analysis for the cathepsin

K A277V mutation. An ethidium bromide-stained agarose gel con-
taining a 303-bp amplified product that was digested with Acil. The
digested PCR products from a normal control individual (C), the father
(F), the affected son (S), and the mother (M) are shown. The normal
PCR product was digested into 152-bp and 151-bp fragments, whereas
the 303-bp products with the A277V defect were not digested. A 100-
bp DNA ladder is shown, left.

agarose gel with direct visualization using ethidium
bromide.

Results

Cathepsin K Mutation Analysis

Sequencing of the seven cathepsin K coding exons and
their respective exon-intron boundaries successfully am-
plified from genomic DNA of the propositus revealed a
C—T transition of nucleotide 935. This point mutation
predicted the substitution of an alanine by a valine at
residue 277 (A277V) in the mature cathepsin K poly-
peptide. Analyses of genomic DNA obtained by PCR
amplification of a 303-bp fragment from the propositus
and from his father identified the mutation that oblit-
erated an Acil restriction site (fig. 1). In the propositus,
only an undigested 303-bp fragment was present,
whereas his mother’s PCR product was digested to 152-
bp and 151-bp fragments (which were not resolved on
the agarose gel). In contrast, digestion of the 303-bp
amplimer from his father revealed two bands, the 303-
bp undigested fragment and the 152-bp/151-bp digested
fragments. These results were consistent with homozy-
gosity for the A277V mutation in the propositus, het-
erozygosity for this mutation in his father, and absence
of the mutation in his mother.

Cytogenetic Analysis

Routine G-banding of metaphase preparations of cul-
tured lymphocytes from the propositus showed a normal
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46, XY karyotype with no evidence of deletions, par-
ticularly of the chromosome 1q21 region (fig. 2). Eval-
uation of his parents revealed the expected 46, XY and
46, XX for his father and mother, respectively.

Polymorphic DNA Marker Analysis

Initially, several STRs from the region at 1q21 con-
taining the cathepsin K gene were evaluated. Marker
D1852343, which flanked the gene by <1 cM on the telo-
meric side, was completely informative and revealed
only one paternal allele (presumably present as two cop-
ies) and no maternal alleles in the propositus (fig. 3).
Additional markers from this region, which were not
fully informative, were inherited in a fashion consistent
with homozygosity for the paternal allele (fig. 4). Sub-
sequently, several STRs spread along the short and long
arms of chromosome 1 were evaluated. As shown in
figures 3 and 4, analysis of the propositus with several
fully informative markers revealed inheritance of both
paternal alleles but no maternal allele. For less-infor-
mative markers, there was no instance in which a ma-
ternal allele was unambiguously inherited by the pro-
positus. Finally, analysis of the propositus and his
parents with several STRs from chromosomes other than
chromosome 1 showed typical Mendelian inheritance,
with paternal and maternal alleles detected in the pro-
positus (data not shown).

Discussion

In the course of mutation analysis of the cathepsin K
gene in a patient with pycnodysostosis, the occurrence
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Figure 2 Chromosome 1 homologues from the proband and
from his father. Cytogenetic analysis of the pycnodysostosis patient
and of his father showed normal 46, XY karyotypes for both, and no
cytogenetic abnormalities were observed in lymphocytes by high-res-
olution cytogenetic analysis (>800 bands). The chromosome 1 cen-
tromeric heteromorphism (arrow) was not informative on the chro-
mosome 1 homologues in the father.
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Figure 3 Polymorphic marker analyses in the proband and in
his parents. Autoradiograms of several STR markers assigned to the
indicated regions of chromosome 1 analyzed with DNA from the father
(F), the mother (M), and their affected son (S). For fully informative
markers D1S228, D152343, and D1S179, the affected son inherited
only alleles from his father. The markers from the telomeric regions
of the 1p and 1q, D15228 and D1S179, respectively, showed inheri-
tance of both paternal alleles, whereas those in the pericentromeric
region—D18514, D1S2344, and D152343,—revealed inheritance of
only one of the two paternal alleles. In addition, D152344 and
D182343 closely flank the pycnodysostosis locus at 1q21, predicting
inheritance of two copies of one paternal allele by the affected son.
These findings are consistent with paternal uniparental disomy in the
son with pycnodysostosis.

of UPD for the paternal chromosome 1 was shown to
be the cause of this recessive skeletal dysplasia. This
novel finding was demonstrated by analysis of the pro-
positus with polymorphic DNA markers along chro-
mosome 1, which revealed inheritance of both paternal
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alleles in some regions, indicating that, although pyc-
nodysostosis in the proband resulted from paternal is-
odisomy at the relevant locus, other parts of chromo-
some 1 displayed paternal heterodisomy. The
phenotypes observed in the propositus included pyc-
nodysostosis resulting from the inheritance of two copies
of a cathepsin K mutation from his father and familial
idiopathic hypercalciuria, an autosomal dominant trait
inherited from the father, and, presumably, unrelated to
the UPD. Neither the gene nor the locus for familial
idiopathic hypercalciuria has been determined.

Three phenotypic abnormalities that are frequently
associated with UPD for chromosomes with imprinting
are intrauterine growth retardation, developmental de-
lay, and reduced stature. In this propositus, birth height
and weight were normal, as was psychomotor devel-
opment, but possible effects of UPD on linear growth
could not be assessed, since a seminal feature of pyc-
nodysostosis is short stature. Nonetheless, it is concluded
that paternal UPD for chromosome 1 did not result in
an observable phenotype, a finding that is consistent
with previous predictions based on imprinting maps in
the mouse. Human chromosome 1 has synteny with por-
tions of mouse chromosomes 1, 3, 4, 8, and 13. None
of those murine chromosomes has been shown to have
either paternally or maternally imprinted regions (Cat-
tanach et al. 1995).

On the basis of haplotype analyses, the mechanism
responsible for UPD of chromosome 1 in this proband
was paternal nondisjunction with inheritance of two
chromosome 1 homologues that had recombined during
meiosis I. Thereafter, either a sperm that was disomic
for chromosome 1 fertilized a nullisomic egg (gamete
complementation), or a trisomy 1 embryo was salvaged
by the loss of the maternal copy of chromosome 1 (tri-
somy to disomy). These two mechanisms are indisti-
guishable unless mosaicism for trisomy 1 is documented.
Since karyotyping of peripheral lymphocytes failed to
reveal such mosaicism, and since placental tissue, which
is the most likely site for such mosaicism, was unavail-
able in this case, gamete complementation and trisomy
to disomy remain as theoretical explanations for this
case of paternal UPD of chromosome 1.

It is not known what the relative probability of gamete
complementation, requiring both maternal and paternal
nondisjunction events, is, compared with trisomy-to-di-
somy salvage, which requires a paternal nondisjunction
and then postfertilization chromosomal loss. Estimates
of the prevalence of chromosome 1 disomy in sperm,
assessed by interphase multicolor fluorescence in situ hy-
bridization, ranged from 0.05%-0.20%, similar to the
rates of disomy for other autosomes (Chevret et al. 19935;
Spriggs et al. 1995). Despite the prevalence of sperm
(and, presumably, eggs) that are disomic for chromo-
some 1, only one pregnancy with trisomy 1 in which no
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MARKER LOCATION FATHER SON MOTHER
D1S214 1p36 [1] [3] 1] [3] 12
+ D15228 1p36 2| |3 2| &8 101
- D1S186 1p34 2| |2 2| |2 i3
D1S162 1p32 1 2 1| 2] 2 3
D18550 1p31 2| |2 21| |2 1 2
- D1s188 1p22 1 4 1] |1 2 3
+ D18248 1p13-p21 2| K2 2| |2 11
D1S514 1p13 2| I 2| |2 1 2
D1S8442 1921 2| & 2| |2 1 2
D152344 1g21 1 2 1| 4 1 3
- D15498 1g21 2| |2 2| |2 1 3
- D152347 1921 1 1 1|1 2 2
- D152343 1g21 3| IH 3| |3 2 2
D151589 1925 2| & 2| 2] 11
- D1S249 131 1 2 11 [2 3 4
+ D1S103 132 3| |8 3| |3 1 2
* D1S179 1q42 3| |4 3| |4 101
D1S102 1q32-q44 1] L& L1] L8] 1 2

Figure 4

Genotype analysis of the proband and his parents with chromosome 1 markers. The polymorphic markers used for these analyses

are shown on the left, with fully informative ones indicated by asterisks (*) and their cytogenetic locations noted in the second column. The
genotypes of the proband and of the parents are shown with one possible phasing. The shaded areas demonstrate the alleles from the two

paternal chromosome 1 homologues.

fetal development occurred has been reported, so tri-
somy 1 can be presumed to be lethal (Hanna et al. 1997).
Interestingly, analysis of patients with Angelman syn-
drome caused by paternal UPD of chromosome 15 re-
vealed that paternal isodisomy predominated, suggesting
that the underlying mechanism was fertilization of a nul-
lisomic egg by a normal sperm with subsequent salvage
of a monosomy by postfertilization duplication of the
paternal chromosome 15 (Mutirangura et al. 1993). This
proposed mechanism was supported by a frequent in-
cidence of advanced maternal age, increasing the like-
lihood that a maternal nondisjunction event had resulted
in a nullisomic egg. In the present case, advanced ma-
ternal age was also noted.

Nondisjunction can occur as a result of errors in mei-
osis I or II. The meiotic origin of nondisjunction can be
distinguished by analysis of polymorphic markers resid-
ing at or close to the centromere. Meiosis I errors result
in heteroallelism near the centromere, whereas meiosis
IT errors cause homoallelism near the centromere. Sal-
vage of monosomic embryos by duplication of the rel-
evant chromosome would also result in homoallelism
near the centromere, but it can often be differentiated
from meiosis II errors by analysis with more telomeric
markers. If any chiasmata formed during meiosis I, UPD
chromosomes resulting from meiosis II errors would
have heteroallelism of some markers, whereas duplicated
chromosomes from postmeiotic salvage should be hom-
oallelic at all loci. STR analysis of the propositus showed
inheritance of both paternal alleles for several telomeric
markers. The father was uninformative for the chro-
mosome 1 centromeric heteromorphism, precluding its
usefulness for establishing the status of the centromere.
The fact that informative polymorphic markers D18442,
D152344, and D152343 at 1921 (Hoggard et al. 1995;

Marenholz et al. 1996) and marker D1S514 at 1p13
(Hoggard et al. 1995; Morissette et al. 1995) were hom-
oallelic, as was the cathepsin K gene mutation at 1q21,
provides strong evidence that the disomy resulted from
a paternal meiosis II error. All of these loci reside within
a few centimorgans of the centromere on the Généthon
human genetic linkage map (Dib et al. 1996), and on
the basis of chiasmata analyses during meiosis I in males
(Hulten et al. 1982), they are unlikely to have recom-
bined with respect to the centromere. Similar analyses
of patients with the Angelman syndrome (Mutirangura
et al. 1993) as well as of patients with paternal UPD for
other autosomes (cited in Ledbetter and Engel 1995)
have shown that isodisomy strongly predominates, pre-
sumably resulting from salvage of a monosomy caused
by maternal nondisjunction. Thus, the meiosis II non-
disjunction event documented here represents an unu-
sual etiology for paternal disomy.

Pycnodysostosis was recently shown to be caused by
defects in the gene for the lysosomal cysteine protease,
cathepsin K, and three gene mutations have been re-
ported. Subsequent molecular investigations of several
individuals with pycnodysostosis have revealed six novel
mutations, including a C—A transversion at nucleotide
935, predicting an alanine-to-glutamate substitution at
residue 277 (A277E). In conjunction with the identifi-
cation of the A277E mutation, >50 normal individuals
were screened for the presence of the A277E lesion by
means of the Acil restriction assay that detected the
A277V mutation in this study. No mutant alleles were
found, which rules out the possibility that A277E or
A277V is a polymorphism. The A277E mutation was
found previously, in two unrelated patients of dissimilar
ethnic backgrounds, on different haplotypes, which sug-
gests independent mutational events. The finding in this
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study of a third mutation at nucleotide 935 suggests that
this is a mutational hot spot for pycnodysostosis. This
is not entirely surprising, since that nucleotide occupies
the middle position of a GCG codon, making it part of
a CpG dinucleotide.

In summary, these studies have identified the first ex-
ample of paternal UPD for chromosome 1 that was de-
tected in a patient who had inherited two identical seg-
ments of a single paternal chromosome 1 homologue
carrying a cathepsin K mutation, resulting in pycnody-
sostosis. The paternal UPD appears to have resulted
from nondisjunction during meiosis II. The lack of an
observable phenotype that can be attributed to paternal
UPD for chromosome 1, combined with the previous
evidence that chromosome 1 is not maternally im-
printed, permits the assignment of chromosome 1 to the
group of human chromosomes without imprinted genes.
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